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Abstract

The main challenge of cross-modal retrieval is to
learn the consistent embedding for heterogeneous
modalities. To solve this problem, traditional label-
wise cross-modal approaches usually constrain the
inter-modal and intra-modal embedding consis-
tency relying on the label ground-truths. However,
the experiments reveal that different modal net-
works actually have various generalization capac-
ities, thereby end-to-end joint training with consis-
tency loss usually leads to sub-optimal uni-modal
model, which in turn affects the learning of consis-
tent embedding. Therefore, in this paper, we argue
that what really needed for supervised cross-modal
retrieval is a good shared classification model. In
other words, we learn the consistent embedding
by ensuring the classification performance of each
modality on the shared model, without the consis-
tency loss. Specifically, we consider a technique
called Semantic Sharing, which directly trains the
two modalities interactively by adopting a shared
self-attention based classification model. We eval-
uate the proposed approach on three representative
datasets. The results validate that the proposed se-
mantic sharing can consistently boost the perfor-
mance under NDCG metric.

1 Introduction

Cross-modal learning constructs the aligning or mapping
function among different modalities [Baltrusaitis er al.,
2019]. An important task is the cross-modal retrieval, which
aims to search examples in one modality (for example, image)
that have similar semantic representations to the query from
another modality (for example, text), rather than performs
a similarity search within the same modality. For example,
Baidu or Google can provide corresponding image display
based on user’s text description, and present relevant intro-
duction according to the user’s image input. Comparing to
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single modal search, the difficulty of cross-modal retrieval is
the semantic gap of heterogeneous data, which needs to con-
strain the consistency between two modal semantic represen-
tations effectively.

To solve this problem, many cross-modal retrieval ap-
proaches are designed with different losses or regulariza-
tions for minimizing the heterogeneity. [Wang et al., 2016b]
divided these methods into real-valued and hash based ap-
proaches according to the output embedding form. On the
other side, in this paper, we rely on the usage of ground-
truths, i.e., the instance labels or cross-modal alignments,
to partition these approaches into two categories: 1) Label-
wise methods [Wang er al., 2013; Wang et al., 2016a; Li et
al., 2018; Zhen et al., 2019]. These methods aim to retrieve
cross-modal instances of the same category, they usually uti-
lize the label information to construct the similarity matrix,
which can constrain the cross-modal inter-class and intra-
class distance for learning consistent embedding. In result,
the cross-modal embeddings are similar for the same class,
and dissimilar for different classes. 2) Alignment-wise meth-
ods [Wang et al., 2019; Lee et al., 2018; Zhang and Lu, 2018;
Yu et al., 2020]. These approaches are designed to retrieve
accurately aligned cross-modal instances, rather than the in-
stances of same category. Therefore, they usually adopt
triplet loss or hard triplet loss using the alignment ground-
truths. In result, the instance is only similar to the aligned
cross-modal instance. In this paper, we concentrate on the
label-wise style methods, which always devote to develop a
multi-modal neural network, which processes an embedding
based consistency loss for jointly optimizing the two modal
embedding networks. However, from the results shown in
Figure 1, we find that joint training with consistency loss does
not significantly improve the retrieval performance, and may
even reduce the performance.

Upon inspection, the problem can be attributed to the clas-
sification performance decrease of different modalities influ-
enced by the consistency loss. In fact, different modalities
contain imbalanced intrinsic information, which leads to dif-
ferences in classification capabilities, i.e., there exist “weak”
and “strong” modalities [Yang er al., 2015]. However, the
joint training consistency loss may reduce the capability of
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“strong” modality. On the other hand, the learning of cross-
modal consistent embedding is related to the classification
performance of each modality considering the learning tar-
get, so training jointly is sub-optimal for learning consistent
embedding. Then how to avoid the negative effects of modal
joint training with consistency loss? We rethink the cross-
modal retrieval from a simple and straightforward aspect: se-
mantic sharing, i.e., training with a shared classification net-
work. We directly shares a unified multi-head attention clas-
sification network for the two modalities, and therefore make
better use of the region structural information shared by the
cross-modal instance itself. In summary, our contribution in-
cludes: 1) rethink the role of different losses in traditional
label-wise methods. 2) remove the interference term (i.e.,
embedding consistency loss), and attempt to adopt the shared
model instead of the structure consistency for learning seman-
tically common embeddings for the two modalities.

2 Related Work

Traditional survey [Wang et al., 2016b] partitioned the cross-
modal retrieval approaches into real-valued and hash based
methods according to their output form. The difference is
that the hash methods are more efficient with hash encoding.

From another perspective, these methods can also be sum-
marized as label-wise and alignment-wise categories accord-
ing to their usage of annotations. Label-wise methods usu-
ally adopt label annotations to learn consistent embedding,
which ensures the similarity of cross-modal instances in the
same category. For example, [Zhen et al., 2019] developed
a deep supervised cross-modal retrieval method, which min-
imizes the discrimination loss in both label and representa-
tion space to supervise the discriminative feature learning;
[Wang et al., 2013] proposed a novel coupled linear regres-
sion framework, which learns two projection matrices to map
multimodal data into a common feature space; [Wang et al.,
2016a] learned projection matrices to map multi-modal data
into a common subspace, which measures the similarity be-
tween different modalities of data. Besides, alignment-wise
methods turn to utilize the alignment annotations to learn con-
sistent embedding, which minimizes the embedding differ-
ences of aligned instances with triplet loss. For example, [Lee
et al., 2018] presented stacked cross attention to discover the
full latent alignments, using both image regions and words in
a sentence as context; [Faghri ef al., 2018] incorporated hard
negatives in the loss function, which is equivalent to mini-
mize a modified non-transparent loss function. The motiva-
tions and evaluation metrics of these two types of methods are
different, so we usually don’t compare them with each other.
However, it is not difficult to find that the label-wise methods
are closely related to the classification performance of each
modality, whereas ignore the impact of consistency loss on
the classification performance.

Our work is related to previous research on multi-modal
networks for cross-modal retrieval [Wang er al., 2016bl],
which uses the joint training with the consistency loss. On
the other hand, the primary task of our work is to learn the
consistent embedding, which is also related to the semantic
representation sharing. Some researches have just come up
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Figure 1: Influence of consistency regularization for cross-modal re-
trieval. 7 represents the weight for consistency loss term, and NDCG
is the retrieval metric. The retrieval performance on the two data sets
may decreases with the consistency loss weight 17 becomes larger.

to use transformer encoder for learning shared cross-modal
semantic representation. For example, [Lu ef al., 2019] ex-
tended the popular BERT architecture to process both visual
and textual inputs in separate streams that interact through co-
attentional transformer layers; [Li ef al., 2020] fed both visual
and linguistic contents into a multi-layer Transformer for the
cross-modal pre-training. Nevertheless, these approaches be-
long to the alignment-wise methods, which place emphasis
on inputting the region segmentations of the aligned image-
text pair to the transformer encoder, then using the traditional
triple loss to learn the consistent embedding. They are dif-
ferent from the viewpoint stated in this paper that the consis-
tency may affects the performance of label-wise methods.

3 The Proposed Method

3.1 Background

Without any loss of generality, the training set can be de-
noted as D = {(v;, w;,yi)}Y,, where v; € R% denotes
the i—th image instance, w; € R% represents the i—th
sentence instance, and y; € RE denotes the instance la-
bel, y;; = 1 if ¢—th instance belongs to the j—th label,
otherwise is 0. Obviously, it is difficult to compare the two
modal raw features for cross-modal retrieval considering that
they lie in heterogeneous feature spaces and have various
physical properties [Wang e al., 2016b]. Therefore, tra-
ditional methods aim to design the inter-modal consistency
loss £, with the label information for joint training, which
can learn two embedding functions, i.e., z;, = f,(v;) and
z;, = fu(w;) for two modalities, and z;,,z;, € R? are d-
dimensional embedding in common space. To develop £,
current approaches [Wang et al., 2013; Wang et al., 2016a;
Li er al., 2018; Zhen et al., 2019] always employ the dis-
crimination loss of all examples from both modalities in the
common representation space:

N
Econ = — Z(SJGU — IOg(]. + 6@”))

ij

N
= D 2S5O —log(1+ %))

mev,w i,j

(1)

where S;;/S? denotes the inter-modal/intra-modal similar-
ity matrix. Szj = 1if z;, and z; are the representations
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Figure 2: Illustration of the proposed semantic sharing. It has two
modules: 1) modal independent segmentation model, which ex-
tracts multi-instance representations for each example; 2) unified
model, which adopts multi-layer transformer encoder that map dif-
ferent modal segmentations into common representation space with
semantic-preserving.

of intra-class samples, otherwise 0. Similarly, S{}l = 1if
{2zi,,,2j,,,m € {v,w}} are the representations of intra-
class samples in the same modality, otherwise 0. ©;; =
1

5 cos(z;,, zj,,) denotes the inter-modal similarity, and ©}} =

1 cos(zi,,,2;,,), m € {v, w} represents the intra-modal sim-
ilarity, cos is the cosine function. Therefore, the first term in
Eq. 1 denotes the inter-modal consistency, while the second
term implies the intra-modal consistency. In detail, a larger
similarity value (cosine similarity cos(z;,,z;,)) means that
v, w; should be classified as similar, and vice versa. Identi-
cally, the second term measures the intra-modal similarities.

Therefore, the overall loss is:

N
L= Z é(z’iu y Ly s yz) + ngcon (2)

i=1

where the first term is the traditional classification loss (e.g.,
the cross-entropy loss for each modality), then we jointly op-
timize the overall loss to train the two modal embedding net-
work for learning common representations. However, the re-
sults in Figure 1 reveal that the consistency loss does not sig-
nificantly improve the performance, and even reduces the per-
formance when 7 increases. We attribute this phenomenon to
the affection of consistency loss on every single modal classi-
fication ability, which will impact the learning of cross-modal
consistent embedding inversely. To solve this problem, we
instead use the shared classification model to iteratively train
image and text modalities, and learn consistent semantic em-
beddings by ensuring that the classification performances of
the two modalities are improved with the shared model.

3.2 Cross-Modal Retrieval with Semantic Sharing

Modal Independent Embedding Models

This module aims to extract initial features for each modal-
ities. Compared to global feature embedding, inspired
from [Karpathy and Fei-Fei, 2017], the semantic relation-
ships of different regions between various modality are sim-
ilar, for example, the correlation between the embeddings of
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“sweetveld” and “elephants” in the text is similar to that of
corresponding regions in the image. Therefore, region rep-
resentations are more suitable than the global features as the
input for learning comparable embedding.

Based on this idea, we implement f, and f,, as two multi-
instance deep neural networks. Specifically, for image modal-
ity, we utilize the pre-trained Faster R-CNN [Lee et al.,
2018], which extracts visual regions with pooled ROI em-
beddings, i.e., the 1024-dimensional feature vector from fc7
layer, denoted as {(fﬁ}tT;l for i—th instance, ¢ is the index,
T; is fixed as 36 for all image instance as [Lee et al., 2018]
for better performance. Meanwhile, to perform segmenta-
tion learning for text, we tokenize each instance using Bi-
GRU [Bahdanau et al., 2015] with the Word2Vec represen-
tations [Mikolov et al., 2013] as input, and obtain the output
as {W;}tT;l, T; is the length of j—th input. In result, each
image or text example can be denoted as a bag of instances.

Shared Model

With the multi-instance representations of each modality,
the shared model aims to take the shareable semantic re-
lationships into feature encoding for learning more com-
parably common embeddings. Inspired from the trans-
former [Vaswani et al., 20171, which encode the relationships
by utilizing the multi-head attention mechanism. We enforce
the two sub-networks, i.e., f;, and f,, to share a unified model
f for learning final embeddings. Therefore, it is intuitive to
build a general model which maps different modal outputs
into a common subspace with semantic-preserving, and thus
we can generate correlated embeddings for image and text
examples from the same category.

Specifically, with the multi-instance outputs {¥*}7%, and
{w! }tTil, we build f, using the encoder as a multi-layer
transformer [Vaswani et al., 2017]. Each modal output is
passed through L encoder-style transformer blocks to pro-
duce final common embeddings z;, and z;,, using image
modality as an example:

zi, =T ({e{}/11)
e; =p(v1 (%) + ¥ (L))

where z;  denotes the final embeddings of i—th image in-
stance, e! represents the ¢-th segmentation input of 7—th in-
stance. Both the raw segmentation representation v and po-
sition features {! are fed through fully connected (FC) lay-
ers ¢1 and 1o, i.e., we use one fully connected network
that projects them into the same embedding space, ¥ (V!) €
R% 1po(1t) € Re. Then, we sum the two features and use an-
other non-linear mapping ¢ to obtain e!. For image modality,
we design the position features according to [Li et al., 2019al,
i.e., each region position is represented with a 5—D vec-
tor, p = (W’ H>W> H> inb{i{%?{Qial)) , Where ((11, bl) and
(ag, by) denote the coordinate of top-left and bottom-right
corner, W, H are the width and height of the input image, and
the last value represents the fraction of image covered. The
position features of the text modality is designed according
to original method [Vaswani et al., 2017]. T denotes a sin-
gle encoder-style transformer block with multi-head attention
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block, wrapped in residual adds [Vaswani et al., 2017]. Sup-
pose H'! corresponds to the intermediate representations after
I-th layer, it can be used to compute three matrices: @, K,
and V corresponding to queries, keys, and values that drive
the multi-head attention block. The dot-product similarity be-
tween queries and keys determines the attention distribution
of values. Then weight-averaged values form the output of
the attention block.

Overall Function
We aim to learn the common embedding for two modalities.
To achieve this goal, we propose to directly use the shared
model to optimize the prediction loss of each modality, while
use the label information to learn the cross-modal semantic-
preserving embedding. The objective contains: 1) Label pre-
diction, which utilizes the final embedding for classification;
and 2) Context prediction, which tries to predict the identity
of each masked segment based on all context segments.
First, the final semantic embeddings obtained by the trans-
former can be used for classification task. In detail, a shared
classifier is connected on the top of transformer encoder net-
work, and takes the final embeddings as input to generate a
C-dimensional prediction. The following objective function
can be expressed as:

N
Ly =Y log(1 +exp(~y; g(z:,)))+ @
i=1

log(1 + eXp(*}’iTQ(Zi“,)))

where g denotes the shared classifier using a one layer fully
connected network with softmax operator. The loss function
can be any convex loss operator, and we utilize the common
multi-label loss as [Zhang and Zhou, 2014].

Inspired from Bert [Devlin ef al., 2019], which utilizes the
masked model to learn high-level representations and capture
rich relationships between segments. We also consider two
masked models to further improve the learning ability of en-
coder, i.e., masked language and object classification mod-
els. In detail, we consider predicting the identity of different
modal masked segment based on all context segments:

N
Ly = Z&;(Vi) + Ly (W)

m (5)
by(vi) = —log Py, (vi"[v;"™)

Co(Wi) = —logP,, (Wi [w,™)

where ¢, ¢,, can be any convex loss function, and we uti-
lize the cross-entropy for simplicity here. g, is the linear
classifier. g, is the trainable model for text modality. For
masked language model, the mask indices are m € NM.
We randomly mask input segment with probability of 15%
as [Li et al., 2019b] for image and text modalities, and replace
the masked ones v” and w" with special token [M ASK].
Then, the goal is to predict these masked segments, based
on their surrounding segments vi\m, wi\m, via minimizing the
negative log-likelihood.

In result, the overall formulation can be represented as:
L=1L;+ ALy (6)
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Algorithm 1 The pseudo code

Input: Dataset: D = {(v;, w;,y:)} Y s
Parameter: \; maxlIter: T, learning rate: [,.

Output: 7, g

1: while stop condition is not triggered do

2:  for mini-batch smapled from D do

3 Calculate label prediction loss with Eq. 4;

4 Calculate context prediction loss with Eq. 5;
5: Calculate overall loss with Eq. 6;

6 Update model parameters using gradient descent;
7:  end for

8: end while

For optimization, we randomly sample a mini-batch includ-
ing image and text modalities at each iteration to iteratively
train 7, g, gu, g With the learned model, we conduct induc-
tive cross-modal retrieval. The procedure of training model is
summarized in Algorithm 1.

4 Experiments

In this section, we conduct extensive experiments on three
real-world datasets to demonstrate the effectiveness.

4.1 Datasets

We experiment on three public datasets, i.e.,
FLICKR25K [Huiskes and Lew, 2008], NUS-WIDE [Chua et
al., 2009] and MSCOCO [Lin et al., 2014]: 1) FLICKR25K
consists of 31,783 images collected from Flickr website.
Each image is associated with several textual descriptions.
Each example is manually annotated with 24 labels. The
dataset is split into 29,783 training images, 1,000 validation
images and 1,000 testing images following [Karpathy and
Fei-Fei, 2017]. 2) NUS-WIDE contains 260,648 web
images. Each image is also associated with several textual
descriptions. Each point is annotated with 81 concept labels.
We select the 21 most frequent concepts as [ Yang et al., 2019;
Jiang and Li, 2017] and keep the corresponding 195,834
text-image pairs. The dataset is split into 189,834 training
images, 5,000 validation images, and 1,000 testing images;
3) MSCOCO consists of 123,287 images, and each image
contains roughly five textual descriptions. We follow the data
split as [Faghri er al., 2018], which left out 30,504 images
that were originally in the validation set. Thus, the dataset
is split into 82,783 training images, 5,000 validation images,
and two testing sets with 1000/5000 images.

4.2 Baselines and Evaluation Protocol

Considering that our proposed method focuses on label-wise
cross-modal retrieval, we firstly compare it with six linear and
deep methods: CCA [Hotelling, 19921, LCFS [Wang et al.,
2013], JFSSL [Wang et al., 2016al, DCCA [Andrew et al.,
2013], DSCMR [Zhen et al., 2019], SCML [Song and Tan,
2019], ViLBert [Lu et al., 2019]. Note that LCFS and JFSSL
belong to the best linear methods. For a fair comparison, we
pre-extract deep embeddings for linear methods, CCA, LCFS
and JFSSL, as the input. For deep models, we carefully im-
plement the approaches as their released code.
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| FLICKR25K | NUS-WIDE | COCO1K | COCO5K

| 2T | T2 | Ave| I2T| T2I| Ave| I2T| T2I| Ave| I2T | T2I| Ave
CCA 303 | 303 | 303 | 513| 505| 509 | 494 | 600 | 547 | 474 | 490 | 477
LCFS 358 | 324 | 341| 573 | 580| 57.6| 588 | 684 | 636| 525| 591 | 558
JFSSL 348 | 297 | 323| 573 | 536 | 554 | 629 721 | 67.5| 559 | 633 | 596
DCCA 56| 529 | 528| 584 | 580| 582 512 608| 560| 512] 502 | 507
DSCMR 647 | 665| 656| 725| 712| 71.9| 745| 856| 80.1| 720| 777 | 748
SCML 540 | 420 | 480 | 624| 634 | 629 - - - - - -
ViLBert 537 600| 569| 636| 63.5| 636| 622| 792| 706 | 473| 673 | 573
ST 659 | 658 | 659| 746 | 581| 663| 621 | 89| 725| 447| 712 580
IMC 388 | 372 380| 31.8| 241 | 280| 237 | 549 | 393 | 147 | 312| 231
wilo R 643 | 67.1| 657 | 726| 724 | 725| 750 861 | 80.6| 721 | 792 756
wio T 65.1 | 660 | 655| 742| 740 | 741| 756| 894 | 825| 69.8| 800 | 749
wlo C 659 | 692 | 675| 749 | 752| 750| 761 | 893 | 827| 702 | 80.5| 753
wio L 40.1 | 427 | 414 334 | 309 | 322| 225| 409 | 317| 145| 319 232
Ours+Con | 65.6 | 688 | 672| 73.5| 724 | 729| 754| 888 | 81| 706| 809 | 757
Ours 663 | 713 | 688 | 752 | 753 | 753 | 772| 900 | 836 | 721 | 87| 714

Table 1: Performance comparison in terms of NDCG score on three datasets. The best results in testing are highlighted in bold.

We also adopt ablation study to verify the effectiveness
of each module: 1) Separate Training (ST) adopts the la-
bel information to train two modal models separately (with
same dimensional feature embeddings), then conduct re-
trieval; 2) Inter-Modal and Intra-Modal Consistency (IMC)
directly adopts the Eq. 1 for training; 3) w/o R replaces re-
gion segmentations with global embedding for the input, and
utilize one fully connected network as a shared model, note
that w/o R equals to the method using Eq. 2 with no £, for
training; 4) w/o T replaces the multi-head attention network
with one fully connected network as a shared model; 5) w/o
C calculates the loss without mask prediction; 6) w/o L cal-
culates the loss without label prediction; 7) Ours+Con adds
the triplet consistency loss.

According to traditional settings, we perform two tasks: 1)
Image vs. Text (I2T). 2) Text vs. Image (T2I). Ave denotes
the average score. Considering three datasets are all multi-
label datasets, we adopt Normalized Discounted Cumulative
Gain metric as [Song and Tan, 2019].

4.3 Retrieval Results

Table 1 presents the quantitative comparison results with both
sate-of-the-art label-wise methods and baselines. “-” indi-
cates that the original paper did not provide the information.
The results reveal that: 1) Supervised methods perform better
than unsupervised methods, i.e., LCFS and JFSSL perform
better than CCA, and DSCMR performs superior to DCCA.
This indicates that label information helps to learn consis-
tent cross-modal embedding. 2) Deep methods perform better
than linear methods, i.e., DSCMR achieves the best perfor-
mance in comparing methods. This indicates that deep net-
works benefit the learning of discriminative embedding. 3)
The performance of DSCMR on FLICKR25K is even worse
than ST (i.e., I2T). A possible explanation that the classifica-
tion abilities of strong and weak modalities on FLICKR25K
differ widely, and the consistency loss may greatly reduce
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the strong modal classification performance, thereby affect-
ing retrieval performance. 4) The w/o R achieves better
performance than DSCMR on most setting except 12T on
FLICKR25K dataset, which validates the conclusion that
consistency may cause negative effect for retrieval. 5) Our
method is superior to w/o R on all metrics, which reveals that
the transformer based encoder can significantly promote the
learning of consistent embedding. 6) Our proposed method
achieves the best performance in all datasets on various met-
rics. This reveals that semantic sharing can effectively miti-
gate the classification degradation problem caused by consis-
tency, which is conducive to learning semantically consistent
embedding. Table 1 also delivers the ablation studies. The
results reveal that: 1) ST performs worse than our method
and joint training methods, for the reason that independent
training cannot effectively resolve the gap of modal hetero-
geneity; 2) IMC performs worse than our method, which in-
dicates that direct inter-modal consistency affects the learning
of consistent cross-modal representation; 3) w/o R and w/o
T are worse than our method, thereby the self-attention net-
work based on the region segmentation is conducive to learn-
ing more discriminative features; 4) w/o C performs superior
to w/o L, and the performance degradation of w/o L is seri-
ous, because label prediction is critical for learning semantic
embedding; 5) our method achieves better performance than
Ours+Con, which indicates that consistency loss has truly lit-
tle effect; and 6) our method achieves the best performances
in all datasets on various metrics, this indicates that the trans-
former based sharing classification model and two prediction
tasks benefit the learning of consistent embedding.

4.4 Case Study

Figure 3 shows the qualitative results of sentence retrieval
given image queries. Different from alignment-wise meth-
ods, we consider that the retrieval results are correct as long
as there exist a shared label between retrieval result and the
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(a) (b)
A Caucasian hand holding a black cell phone. A couple of big slabs of meat with foot
A hand holding a smartphone with a small on top of them. \/
screen . \ A sandwich with various toppings next
A man holding his Sprint cell phone with the toa sweet potato . \/
words Upstage across the screen . A plate filled with frensh toast sitting
A person holding a cell phone in their hand . next to a drink . \/
A woman in blue sweater holding two cellphones A plate with a sandwich and a pickle.
while wearing headphones. Wooden spoons laid out across a

kitchen table.

A person hitting a tennis ball with a
tennis racket on a tennis court . \

A toddler hitting the ball with a
baseball bat in his backyard . \

A child playing with a plastic bat and
ball in a yard next to a garage . \/

The tennis player is about to hit a ball
with his racket . \/

Cars are seen on the street outside a
tall building . X

(d)
A women with a tennis racquet in one
hand and a towel in the other .
A woman is holding a tennis racket
and a towel .
A small black dog standing over a
plate of food . X
A full view of a working office with
computers . X
A woman in a tennis outfit walks on a
court holding a towel and a racket .

Figure 3: (Best viewed in color when zoomed in.) Qualitative results of text retrieval given image queries. For each image query we show
the top-5 ranked sentences. We observe that our method retrieves the correct results in the top-ranked sentences.

Query: Two dogs sharing a frisby in their mouth in the snow

NTW’

\j/
e |

.1

Query: There is a person petting a very large elephant

Query A black and gray spotted cat is sitting on a windows sill.

Figure 4: (Best viewed in color.) Qualitative results of image retrieval given sentence queries. For each sentence query, we show the top-3

ranked images, ranking from left to right.

query. Most of the retrieved sentences are correct (showed as
green tick). On the other hand, there are semantic incorrect
outputs such as ¢ (5), d (3) and (4), possibly due to occa-
sionally poor knowledge. Figure 4 illustrates the qualitative
results of image retrieval given sentence queries. Each sen-
tence corresponds to a ground-truth image. For each sentence
query, we show the top-3 retrieved images, ranking from left
to right. In these examples, our model retrieves the ground-
truth image successfully.

5 Conclusion

Traditional label-wise cross-modal approaches usually con-
strain the inter-modal and intra-modal embedding consis-
tency relying on the label ground-truths. However, in this
paper, we verify that a direct good shared classification model
is better. That is, different modalities can use this shared
model to acquire the consistent semantic embedding by di-
rectly enhancing classification performance. Specifically, we
discard the previous cross-modal consistency loss, and train

3305

two modalities interactively by developing a shared trans-
former encoder to enhance each modal classification perfor-
mance. The results validate the effectiveness of the proposed
semantic sharing.
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